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Abstract
Upper bounds for the number N (g) of Casimir operators of perfect Lie
algebras g with nontrivial Levi decomposition are obtained, and in particular
the existence of nontrivial invariants is proved. It is shown that for
high-ranked representations R the Casimir operators of the semidirect sum
s
−→⊕R(deg R)L1 of a semisimple Lie algebra s and an Abelian Lie algebra

(deg R)L1 of dimension equal to the degree of R are completely determined
by the representation R, which also allows the analysis of the invariants of
subalgebras which extend to operators of the total algebra. In particular, for
the adjoint representation of a semisimple Lie algebra the Casimir operators of
s
−→⊕ ad(s)(dim s)L1 can be explicitly constructed from the Casimir operators of

the Levi part s.

PACS number: 02.20.Sv

1. Introduction

The problem of characterizing the number and form of invariants of the coadjoint representation
of Lie algebras has gained importance not only in representation theory, in order to label
and characterize representations, but also in physical applications, where the eigenvalues of
the corresponding invariants, in particular the Casimir operators, provide quantum numbers
describing the different states of a system, as well as other quantities characterizing specific
properties of the system [1]. For semisimple Lie algebras the problem was entirely solved in
1950s [2, 3], partially motivated by the application of group theory to spectroscopy and the
theory of branching rules necessary to classify the electron ln-configurations in total angular
momentum and spin couplings (LS or Russel–Saunders couplings) and the determination
of energy matrices [4]. For the nonsemisimple case only very few results exist, mainly
isolated types of algebras which have been analysed because of their physical interest (see [5]
and references therein). This is, for example, the case for the inhomogeneous Lie algebras
sa(n, R), which appear in gauge theories of gravity [6]. However, a general theory of invariants
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concerning these algebras does not exist, since there is no analogue of the root method for
the nonsemisimple case. Of special interest are those algebras whose Levi decomposition is
nontrivial, since most of the symmetry groups appearing in physics are a semidirect product of
some semisimple group and an Abelian or solvable group (see for instance the kinematical Lie
algebras [7]). However, here the difficulty in obtaining the invariants is sometimes formidable,
since they depend simultaneously on the radical (the maximal solvable ideal) and the Levi
part, specifically on the representation describing the semidirect product. It has been shown
that the Levi decomposition does not simplify the determination of the invariants [8], so that
new methods must be developed in this case in order to obtain some general criteria.

In this paper we concentrate on the invariants of perfect Lie algebras, i.e., of Lie algebras
satisfying the equality g = [g, g] and which are not semisimple. In view of the Levi
decomposition, this is equivalent to ensuring that the radical is not reduced to zero. We
first give an answer to a question that has already appeared in the literature, namely if perfect
Lie algebras must necessarily have nontrivial invariants [9]. It was shown long ago that, if
invariants exist, they can be chosen as Casimir operators [10, 11]. Using classical theory we
show that the perfectness establishes the existence of invariants. This will be a consequence
of the radical’s structure. In contrast to the classical algebras, the number of independent
invariants cannot, however, be deduced from the rank of the semisimple part. We will establish
some approximation formulae for the number of invariants, which are indeed upper bounds.
These formulae can be obtained with complete independence from the structure of the radical,
and are obtained in terms of the Levi part and the representation R describing the semidirect
product. The case of the Lie algebras s

−→⊕ ads(dim s)L1 is of special interest, since the number
of invariants is completely determined by the rank of the semisimple part s and they can be
explicitly constructed from the Casimir operators of s. It will follow, in particular, that these
algebras admit always even number or quadratic Casimir operators. Moreover, for sufficiently
high-dimensional representations, these formulae will give the exact number of independent
invariants of the algebra. This is of interest for tensor products, since from certain dimensions
onwards this implies that the Casimir operators of the algebra are completely determined by
the representation. This question also leads to the analysis of extending invariants of certain
subalgebras to invariants of the total algebra. For the case of Abelian radicals (the only case
which can be dealt with in full generality) this will allow us to establish some lower bounds for
the number of invariants. As a consequence, the number of Casimir operators that depend on
the whole representation (and not merely on some irreducible component) can be predicted,
which constitutes an important fact in some applications like the analysis of missing label
operators [5].

Unless otherwise stated, any Lie algebra g considered in this work is indecomposable and
is defined over the field R of real numbers. We convene that nonwritten brackets are either
zero or obtained by antisymmetry. We also use the Einstein summation convention. Abelian
Lie algebras of dimension m will be denoted by mL1.

2. Invariants of Lie algebras

We discuss briefly the method used to find these invariants, and in particular the Casimir
operators of an algebra [12]. If {X1, . . . , Xn} is a basis of g and

{
Ck

ij

}
the structure constants

over this basis, we can represent g in the space C∞(g∗) by the differential operators,

X̂i = −Ck
ijxk

∂

∂xj

(1)
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where [Xi,Xj ] = Ck
ijXk (1 � i < j � n). The operators X̂i satisfy the brackets

[X̂i, X̂j ] = Ck
ij X̂k and therefore constitute a representation of g. An analytic function

F ∈ C∞(g∗) is called an invariant of g if and only if it is a solution of the system:

{X̂iF = 0, 1 � i � n}. (2)

Polynomial solutions of the system correspond to classical Casimir invariants, after
symmetrization. The system (2) can also have solutions which are not polynomials (e.g.
rational functions or harmonics), which leads naturally to enlarge the concept of invariant
to ‘generalized Casimir invariants’. These solutions also have a fixed value on irreducible
representations of g. If (2) has no solutions at all (as happens, for example, for the two-
dimensional affine algebra r2) we say that the invariants of the coadjoint representation ad∗

are trivial. In particular, an adaptation of a well-known result of partial differential equations
allows us to determine the cardinalN (g) of a maximal set of functionally independent solutions
of the system in terms of the brackets of g over a given basis,

N (g) := dim g − sup
x1,...,xn

{
rank

(
Ck

ijxk

)
1�i<j�dim g

}
(3)

where A(g) := (
Ck

ijxk

)
is the matrix which represents the commutator table of g over the basis

{X1, . . . , Xn} [13].
As an example, let us consider the Lie algebra g = sl(2, R)

−→⊕ 2D1 6L1, where Dj

denotes the (2j + 1)-dimensional irreducible representation of maximal weight λ = 2j .
The commutator matrix A(g) with respect to the ordered basis {X1, . . . , X9} is

A(g) =




0 2x2 −2x3 2x4 0 −2x6 2x7 0 −2x9

−2x2 0 x1 0 2x4 x5 0 2x7 x8

2x3 −x1 0 x5 2x6 0 x8 2x9 0
−2x4 0 −x5 0 0 0 0 0 0

0 −2x4 −2x6 0 0 0 0 0 0
2x6 −x5 0 0 0 0 0 0 0

−2x7 0 −x8 0 0 0 0 0 0
0 −2x7 −2x9 0 0 0 0 0 0

2x9 −x8 0 0 0 0 0 0 0




. (4)

It is immediate that the rank of this matrix is 6, thus there are three independent invariants.
Taking into account the subdivision of the matrix above, and applying the method introduced
in [8] to reduce the corresponding system (2), we easily obtain a fundamental set of invariants
for this algebra, formed by the Casimir operators I1 = 4x4x6 − x2

5 , I2 = 4x7x9 − x2
8 and

I3 = x1x5 − 2x3x4 − x2x6. We observe that no fundamental system of invariants formed by
functions which are independent of the variables {x1, x2, x3} can be obtained.

Invariants of Lie algebras for the coadjoint representation have been determined only in
low dimensions, due to the nonexistence of complete classifications in dimensions n � 7 (for
nonsemisimple algebras). Lie algebras with nontrivial Levi part have been classified up to
dimension 9 [14], and partially in dimension 10 [15]. Invariants of Lie algebras having a
rank 1 Levi subalgebra have been analysed in [8], where some general formulae on their
number and structure were given. Further, there exist various results in low dimensions and
for special types of solvable Lie algebras [5, 9, 16, 17]. Here we will concentrate on a special
type of Lie algebras, called perfect, and which includes in particular semisimple Lie algebras.

Definition 1. A Lie algebra g is called perfect if g = [g, g].
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Nonsemisimple perfect Lie algebras arise when contracting semisimple Lie algebras.
Thus, for example, the Poincaré Lie algebra in (3 + 1) dimensions is a perfect Lie algebra
obtained from a contraction of the de Sitter Lie algebra so(4, 1) [7].

3. Existence of Casimir operators for perfect Lie algebras

Although, in general, formula (3) constitutes only an upper bound for the number of
independent Casimir operators [11], for perfect Lie algebras g we have that NC(g) = N (g),
where NC(g) denotes the number of independent Casimir operators [11]. This is due to the
fact that perfect Lie algebras are algebraic [10].

This result does not however solve the question of existence, since a perfect Lie algebra
may have no invariants at all. Consider for example the special affine Lie algebras sa(n, R),
which are known to have only one invariant, independent of the dimension [18]. It could
therefore be expected that there exists some semisimple Lie algebra s, some representation R
of it and a solvable Lie algebra r such that s −→⊕Rr is perfect and has no invariants. In this section
we show that this cannot occur, that is, a perfect algebra always admits nontrivial invariants,
which are moreover classical Casimir operators. The key to deriving this is a technical result
due to Dixmier in his study of universal enveloping algebras U(g) of Lie algebras g [19]:

Theorem 1. Let g �= 0 be a finite-dimensional Lie algebra. Let

S := {u ∈ U(g) | [u, x] = λ(x)u, ∀x ∈ g}
be the semicentre of U(g). Then S does not reduce to the scalars R.

The semicentre S is indeed a commutative subalgebra of U(g) that contains the centre
Z(U(g)). If now g is a Lie algebra whose radical (i.e. maximal solvable ideal) is nilpotent, then
it can be shown, using what Dixmier called ‘distinguished linear forms on g’, that S = Z(U(g))

[19]. This implies that any rational solution to the system (2) can be reduced to a polynomial
solution. Thus in the case of Lie algebras with a nilpotent radical we can always find Casimir
operators. Semisimple Lie algebras are a special case of this corresponding to a vanishing
radical. Theorem 1 reduces the existence problem of Casimir operators on perfect algebras to
the following:

Proposition 1. Let g be a perfect Lie algebra with Levi decomposition s
−→⊕Rr. Then its radical

r is a nilpotent Lie algebra.

Proof. Consider the ideal J = [g, g] ∩ r. Since r is the maximal solvable ideal of g, we
conclude that J = r. In fact, from the Levi decomposition of g we obtain

[s −→⊕Rr, s
−→⊕ Rr] ⊂ s

−→⊕R[g, r] (5)

and since g is perfect r = [g, r] = J . If now (V , ρ) is an irreducible g-module, by Lie’s
theorem there exists a common eigenvector v0 �= 0 for all elements of the radical r. If we
define

Wf = {v ∈ V | ρ(X)(v) := X · v = f (X) · v ∀X ∈ r}
the nonnullity of v0 implies the existence of a linear form f0 ∈ g∗ such that Wf0 �= 0. Now
this space is stable by the action of g, and by irreducibility of the representation it follows
that V = Wf0 . Therefore the action of the radical on the module is by scalar transformations,
which implies that [g, r] · V = 0. This proves that ρ(X) is nilpotent for the elements X ∈ r,
from which the nilpotence of r follows from application of Engel’s theorem. �
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Corollary 1. A perfect Lie algebra g satisfies N (g) > 0. Moreover, g admits a fundamental
set of invariants F formed by Casimir operators.

Since the radical must be nilpotent, from proposition 1 we deduce the existence of
nontrivial Casimir operators. By the formula NC(g) = N (g) proved in [11] we can find
a maximal set of independent invariants formed by Casimir invariants. This result, which
follows naturally from the classical theory, allows us to reinterpret the existence of the
quadratic Casimir operator for semisimple Lie algebras (and the other operators of higher
degree). Although it seemed that the existence of the invariants is a consequence of the
nondegeneracy of the Killing form, the preceding results point out that the reason for their
existence lies principally in the fact that the algebra is perfect. The effect of the semisimplicity
will have consequences on the number of independent invariants (given by the rank), their
minimal degree (as is the case of the quadratic operator) and on the integrity properties of the
fundamental system formed by the Casimir operators [3]. For a general perfect Lie algebra
these properties no longer hold, as can easily be extracted from the special affine Lie algebras
sa(n, R), which have only one Casimir operator independent of the rank of the simple part
[18]. Another interesting fact is the independence of the particular structure of the radical
r as nilpotent Lie algebra. This also shows that the characterization problem of invariants
of Lie algebras reduces to the analysis of the Casimir operators of classical algebras s, their
representations and the solvable non-nilpotent Lie algebras admitting an s-module structure
[8, 20].

A particular case follows immediately from proposition 1, namely the twisted product of a
semisimple Lie algebra r with an Abelian algebra determined by an irreducible representation
of s:

Corollary 2. For any semisimple Lie algebra s and any irreducible representation R the Lie
algebra s

−→⊕R(deg R)L1 admits a fundamental set of invariants formed by Casimir operators.

This is a stronger version of theorem 2 in [8], since the existence of Casimir invariants
is ensured for any rank. The second assertion follows at once from the special case of the
Beltrametti–Blasi formula (3) considered in [11]. In particular, we deduce an interesting
consequence concerning the Lie algebras having no invariants [8, 16, 20]:

Corollary 3. If N (g) = 0, then the factor algebra g/[g, g] does not reduce to zero.

The interesting consequence of this for classification purposes is that a perfect Lie algebra
can never contract (in the Inönü–Wigner sense) to an algebra admitting only trivial invariants
for the coadjoint representation. This fact has a notorious significance in the analysis of the
orbits of Lie algebras and their topology, as well as in the analysis of rigidity properties on
solvable Lie algebras [21, 22].

A problem that arises naturally from this is to obtain some estimation of the number of
independent Casimir operators of a perfect Lie algebra.

4. Upper bound for Casimir operators

In the preceding section we have seen that a perfect Lie algebra always admits nontrivial
invariants, due to the nilpotency of the radical, and that following proposition 1 we can
indeed find a fundamental system of invariants formed by Casimir operators. However,
for high-dimensional representations it is usually difficult to determine the number N (g) of
independent invariants (see, e.g., perfect algebras with an exceptional Lie algebra as Levi part),
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up to some particular cases. It is therefore of interest to obtain some bounds for N (g). The
first approximation, which is rather unsatisfactory, is based only on the well-known properties
of semisimple Lie algebras:

Lemma 1. For a perfect Lie algebra g = s
−→⊕Rr the following inequality holds,

N (g) < dim r + dim h (6)

where h is the Cartan subalgebra of s.

Proof. This is a direct consequence of the fact that the number of independent Casimir
operators of the Levi part is given by its rank [3]. Therefore,

N (g) = dim g − rank A(g) = dim s + dim r − rank A(g)

� dim s + dim r − rank A(s) = dim r + dim h.
(7)

The strict character of the inequality follows at once from the fact that the rest of the commutator
matrix A(g) (once A(s) has been extracted) cannot have rank zero. �

This first approximation will, however, be quite inexact, even in low dimensions. Consider
for example the Lie algebra so(3)

−→⊕ 2adso(3)6L1. This nine-dimensional algebra has three
independent invariants, but formula (6) would only tell that N � 7. For other Lie algebras,
such as the exceptional algebras and their representations, the bound given by (6) is scarcely
of use. Observe that this bound takes no care of the representation R used to describe the
semidirect sum. One can therefore try to improve the upper bound of N (g) taking into account
the representation R of the Levi part acting on the radical. In order to be applicable, this bound
should be independent of the particular structure of the (nilpotent) radical (the general case
will follow from using this contraction). To this extent we introduce some additional notation:
let g = s

−→⊕Rr be a perfect algebra, {X1, . . . , Xn} a basis of s, and {X1+n, . . . , Xn+m} a basis
of r. We define the matrix

ρR(s) := (−Cn+k
i,n+j xk+n

)
1�i�n,1�j,k�m

(8)

that is, the matrix ρR(s) comprises the action of the Levi part on r with respect to the
representation R. In what follows, and unless otherwise stated, we will implicitly assume that
R does not contain copies of the trivial representation D0 of s.

Proposition 2. For the Lie algebra g = s
−→⊕Rr the following inequality holds:

N (g) � dim r + dim h − rank ρR(s). (9)

Proof. Let A(g) be the commutator matrix of g. This matrix can be seen as a block matrix
considering the following subdivision:

A(g) :=
(

A(s) ρR(s)

−ρR(s)t A(r)

)
. (10)

Then we have rank A(g) � rank A(s) + rank ρR(s) (since rank A(s) < dim s and the
apportation of A(r) is being ignored), so that

N (g) � dim r + dim s − rank A(s) − rank ρR(s) = dim r + dim h − rank ρR(s). (11)

�

In general, if the degree deg R of the representation is very high in comparison to the
dimension of s, we will have that rank ρR(s) = dim s, so that in this case (11) can be reduced
to

N (g) � dim r + dim h − dim s. (12)
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Table 1. Evaluation of (15) for s = su(3).

R dim g rank A(g) N (g) Upper bound (15) M(g)

3 11 10 1 2 0
3 ⊕ 3 14 12 2 2 0
3 ⊕ 3̄ 14 12 2 3 1
6 14 12 2 3 1
8 16 12 4 4 2
6 ⊕ 3 17 16 1 3 1
6 ⊕ 3̄ 17 14 3 3 1
3 ⊕ 3 ⊕ 3 17 16 1 1 1
3 ⊕ 3 ⊕ 3̄ 17 14 3 3 2
10 18 16 2 4 2
6 ⊕ 6 20 16 4 6 4
34 20 16 4 4 4
35 23 16 7 9 7

Indeed (11) (or (12) when applicable) will be the best upper bound that can be obtained
without having more information about the structure of the radical. One could be tempted to
use the decomposition of R into irreducible representations, and to develop a similar argument
as in the preceding proposition. However, a further subdivision will soon lead to false results,
as can be seen for the following example. Let s = sl(2, R) and consider the tensor product
representation R = D2 ⊗ D1. We have R = D3 ⊕ D2 ⊕ D1, and the representation is of
dimension 15. If we assume that r = 15L1, then s

−→⊕R15L1 has 12 Casimir operators. The
upper bound above provides the approximation

N (s
−→⊕ Rr) � 15 + 1 − rank ρR(s) = 13 (13)

and by parity of the dimension the value is at most 12. Any further reduction that considers
the decomposition of R into irreducible components would give a value which is lower than
the number of Casimir operators of the algebra. Although the bound (11) cannot be refined
using the decomposition of R, we can improve it by considering the parity, as in the preceding
example. If we define

ε(g) :=
{

1 if rank ρR(s) ≡ 1 (mod 2)

0 if rank ρR(s) ≡ 0 (mod 2)
(14)

then formula (11) is rewritten as

N (g) � dim r + dim h − rank ρR(s) − ε(g). (15)

Formula (15) provides a good approximation to the value of N (g). Table 1 shows the
values obtained for some representations of su(3) up to degree 12. Here m denotes an
m-dimensional irreducible representation, while m̄ denotes dual representations.

We further note that for the tabulated representations of su(3) we have

N (su(3)
−→⊕R(deg R)L1) = N (su(3)

−→⊕ R̄(deg R̄)L1) (16)

where R̄ denotes the dual of the representation R.
Formula (15) contains more information than a mere upper bound for the number of

independent invariants, since it allows us to generalize some of the results of [8] to higher rank
algebras. The case of an Abelian radical suffices to establish an upper bound for the general
case of arbitrary nilpotent radicals, as shown in the following:
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Proposition 3. Let g = s
−→⊕Rr be a perfect Lie algebra. Then

N (g) � dim r + dim h − rank ρR(s) − ε(g).

Proof. Let {X1, . . . , Xn,Xn+1, . . . , Xn+m} be a basis of g such that {X1, . . . , Xn} is a basis
of s and {Xn+1, . . . , Xn+m} is a basis of r. Let

{
Ck

ij

}
1�i,j,k�n+m

be the structure constants of g

over this basis. If we consider the change of basis defined by

X′
i := Xi 1 � i � n X′

n+j := 1

n
Xn+j 1 � j � m (17)

then, with respect to this change, the brackets of the algebra change to

[X′
i , X

′
j ] = [Xi,Xj ] 1 � i, j � n

[X′
i , X

′
n+j ] = 1

n
[Xi,Xn+j ] 1 � i � n 1 � j � m (18)

[X′
n+i , X

′
n+j ] = 1

n2
[Xn+i, Xn+j ] 1 � i, j � m.

Since [X′
i , X

′
n+j ] = 1

n
Cn+k

i,j+nXn+k = Cn+k
i,j+nX

′
n+k, (17) shows that the Levi part s and the

representation R of s on the radical remain unchanged, while the brackets of the radical r

adopt the form

[X′
n+i , X

′
n+j ] = 1

n
Cn+k

n+i,n+jX
′
n+k 1 � i, j, k � m. (19)

Therefore, for n → ∞ we obtain

[X′
n+i , X

′
n+j ] = 0.

This shows that the Lie algebra s
−→⊕ RmL1 is an Inönü–Wigner contraction of g [23]. Using

either the well-known fact that the number of Casimir operators of a contraction is at least that
of the contracted algebra or the general formulae given in [24] for arbitrary types of invariants,
we conclude that

N (g) � N (s
−→⊕ RmL1) (20)

and the assertion follows from proposition 2. �

We now analyse the block matrix (10) more closely, in order to extract additional
information on the constitution of the Casimir operators in dependence on the
representation R.

Proposition 4. A perfect Lie algebra g = s
−→⊕R(deg R)L1 contains M(g) := deg(R) −

rank ρR(s) Casimir operators which depend only on the variables associated with the s-
module (deg R)L1.

Proof. If {X1, . . . , Xn,Xn+1, . . . , Xn+deg R} is a basis of g such that {X1, . . . , Xn} spans s and
{Xn+1, . . . , Xn+deg R} is a basis of the radical (deg R)L1, then from the system of PDEs (2)
giving the invariants of g we can extract the following subsystem,{

X̂′
iF := −Ck

i,j+nxk

∂

∂xn+j

F = 0

}
1�i�n,1�j�deg R,k�n+1

(21)

which can be rewritten as

ρR(s)

(
∂

∂xn+j

F

)T

= 0; (22)



The structure of the invariants of perfect Lie algebras 6717

(21) is the maximal subsystem of (2) containing only variables of the radical of g, and therefore
any solution to (21) extends trivially to an invariant of g. The number of independent solutions
of (21) is given by deg(R) − rank ρR(s) applying standard results of differential equations
(system (21) can be seen as an independent system). Moreover, since the algebra g is perfect,
the solutions of (21) can be chosen as polynomials in the variables of (deg R)L1. �

This provides some interesting consequences concerning the invariants of semidirect
products corresponding to irreducible representations of minimal degree (that is, either
the standard or the adjoint representation). To this extent denote by R0 the irreducible
representation of a semisimple Lie algebra of minimal degree.

Corollary 4. If deg R0 < dim s then any invariant of g = s
−→⊕R0(deg R0)L1 depends on the

variables of s and (deg R0)L1.

The proof is straightforward, since the subsystem (21) determined by the action of s on
the radical has no solutions, as follows easily taking into account the matrix ρR0(s) and the
fact that deg R0 < dim(s). Therefore any solution to (2) must involve variables corresponding
to elements of s. It can also be seen that the Casimir operators of s do not provide solutions
of the system, which implies that any invariant is necessarily a solution of the subsystem:

−ρR0(s)
T

(
∂

∂xj

F

)T

= 0. (23)

This is mainly the reason why for the inhomogeneous Lie algebras the Casimir operators
depend on almost all the variables of the algebra, since the low dimension of the representation
is not sufficient to generate solutions of the system (2). As a consequence, representations of
this type constitute the most difficult case to solve, since no easy applicable general pattern
to determine their invariants seems to exist. The best known example of this pathology is the
special affine Lie algebras sa(n, R) [18].

Corollary 5. For any simple Lie algebra s the semidirect product g = s
−→⊕ ads(dim s)L1 has

exactly two rank(s) independent Casimir operators. In particular, it has at least two quadratic
Casimir operators.

Proof. Let A(g) be the commutator matrix of g. The system (2) giving the invariants can be
rewritten as

A(g) :=
(

A(s) ρR(s)

−ρR(s)t 0

) (
∂F

∂xi

)T

= 0. (24)

From proposition 4 we know that the subsystem

ρR(s)

(
∂

∂xn+j

F

)T

= 0 (25)

provides rank(s) solutions of (22). Since the action of the Levi part s on the Abelian radical
is the adjoint action, it follows easily that there do not exist invariants of g depending only
on variables associated with s. This implies that the system (24) can be simplified to the
following: (

0 ρR(s)

−ρR(s)T 0

) (
∂F

∂xi

)T

= 0. (26)

This shows that the algebra has exactly two rank(s) independent invariants, which can be
chosen as polynomials by the perfectness of the algebra. This proves the first assertion.
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Suppose that {X1, . . . , Xn} spans s and let C(2) = aijxixj (1 � i; j � n) be a quadratic
Casimir operator of s. From (24) it is immediate that C′(2) := aijxi+nxj+n is an invariant of
g, since it is a solution of (24). From the matricial expression of (26) it also follows that C(2)

can be used to obtain a degree 2 solution of the system,

−ρR(s)T
(

∂

∂xj

F

)T

= 0 (27)

where 1 � j � n. Indeed, the polynomial

C′′(2) := aij (xi+nxj + xixn+j ) (28)

is a solution of (26) and (27), thus an invariant of g. So for any degree 2 Casimir operator of
s we obtain two degree 2 operators of the perfect Lie algebra g. �

As a consequence of this result, it suffices to know the Casimir operators of a
semisimple Lie algebra s to determine all invariants of the corresponding perfect Lie algebra
g = s

−→⊕ ads(dim s)L1, without having to solve the corresponding system (2) explicitly. The
following example illustrates the procedure of the proof. Consider the Lorentz algebra so(3, 1).
Over the basis {Ji,Ki}i=1,2,3 the brackets are given by

[Ji, Jj ] = εijkJk [Ji,Kj ] = εijkKk [Ki,Kj ] = −εijkJk. (29)

The Casimir operators are

C1 = J 2
1 + J 2

2 + J 2
3 − K2

1 − K2
2 − K2

3
(30)

C2 = J1K1 + J2K2 + J3K3.

Consider the Lie algebra so(3, 1)
−→⊕ adso(3,1)6L1 over the basis {Ji,Ki, J

′
i , K

′
i}i=1,2,3, where

the brackets are those of (29) joint with the following:

[Ji, J
′
j ] = εijkJ

′
k [Ji,K

′
j ] = εijkK

′
k

(31)
[Ki, J

′
j ] = εijkK

′
k [Ki,K

′
j ] = −εijkJ

′
k.

It is elementary to verify that the rank of the commutator matrix is 8, so that the algebra
has four invariants. The perfectness ensures that they can be chosen as polynomials. Using
formula (28) applied to the invariants (30), we obtain the following polynomials:

C ′
1 = J ′2

1 + J ′2
2 + J ′2

3 − K ′2
1 − K ′2

2 − K ′2
3

C ′
2 = J ′

1K
′
1 + J ′

2K
′
2 + J ′

3K
′
3

(32)
C′

3 = J1J
′
1 + J2J

′
2 + J3J

′
3 − K1K

′
1 − K2K

′
2 − K3K

′
3

C ′
4 = J1K

′
1 + J2K

′
2 + J3K

′
3 + J ′

1K1 + J ′
2K2 + J ′

3K3

Either by direct verification or by analysis of the corresponding system (2), these
functions are invariants of the algebra and constitute a fundamental set of invariants of
so(3, 1)

−→⊕ adso(3,1)6L1.
In view of the preceding examples, we can consider the adjoint representation as a limiting

case, since it allows an explicit determination of the invariants of the algebra s
−→⊕ ads(dim s)L1,

while for lower dimensional representations the invariants of s are of no use to determine
the Casimir operators of the corresponding algebra. One can therefore expect that for
representations R whose degree exceeds the dimension of s, all invariants will be obtained by
applying proposition 4. With some restrictions, this will be indeed the general pattern.
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Proposition 5. For sufficient high degree deg R, the perfect Lie algebra s
−→⊕R(deg R)L1

satisfies the following equality:

N (g) = M(g).

The proof is a direct consequence of the procedure used in the proof of proposition 4
and the degree of the representation R. Two important remarks must however be made. In
general deg R > dim s does not automatically imply that the invariants of s

−→⊕R(deg R)L1 are
independent of the variables {x1, . . . , xn} associated with s. The most elementary example
showing this is the Lie algebra su(3)

−→⊕ 6⊕3̄9L1, where 6 = Sym23, 3 denoting the three-
dimensional standard (quark) representation and 3̄ the dual antiquark representation. This
algebra has three Casimir operators, but here M(su(3)

−→⊕ 6⊕3̄9L1) = 1, so that in spite of
having a representation whose degree exceeds the dimension of su(3), two Casimir operators
depend essentially on the variables of the Levi part. This is due to the combination of a
representation and a dual representation, which will reduce the number of solutions found
from the subsystem determined by the matrix ρR(su(3)). For other semisimple Lie algebras a
similar pattern is observed for combinations of this type whose degree exceeds the dimension of
the algebra in only some units. However, for sufficiently high dimension of the representation
this anomaly will not occur any more, so that proposition 4 holds. In particular, for rank 1
simple Lie algebras the proposition holds for any representation R of degree �4 [8].

The second important fact concerns the perfectness of the algebra. If we allow R to
contain a copy of the trivial representation D0, the preceding assertion is false. Again the Lie
algebra su(3) provides the example. Consider the Lie algebra su(3)

−→⊕ 3⊕3⊕3⊕1r, where R is
the representation 3 ⊕ 3 ⊕ 3 ⊕ 1 (1 denoting D0) and r is defined by the brackets

[X18,Xi] = Xi 9 � i � 17. (33)

An application of proposition 4 would provide two functions depending only on {X9, . . . , X17}
({X1, . . . , X8} being a basis of su(3)), but it can easily be verified that N (su(3)

−→⊕ 3⊕3⊕3⊕1r) =
0 holds. Therefore the absence of D0 is an essential condition for proposition 4 to be applied.

5. Lower bound for N (g) and Abelian radicals

In the preceding section, we have seen that for sufficiently high dimension of R the invariants
of the Lie algebra s

−→⊕R(deg R)L1 are completely determined by the subsystem (25). This
fact leads us naturally to ask if the decomposition of R into irreducible representations allows
us to find invariants of subalgebras which extend naturally to invariants of the total algebra.
This method has already been applied to algebras having a rank 1 Levi part [8], where
proposition 4 holds generically because all representations are self-dual. Now, for higher ranks,
we have already seen that, even if deg R > dim s, the subsystem (25) does not automatically
provide all invariants of g, if the difference deg R − dim s is small. Thus, before trying to
generalize the results of [8], we must guarantee that for the representations R used proposition 4
holds. We can ask which is, for a given semisimple Lie algebra s, the minimal positive integer
such that if R is an irreducible representation of s of degree deg R := dim(s) + n(s), then all
Casimir operators of s

−→⊕R(deg R)L1 are solutions of subsystem (25). This integer n(s) will
be called the normalization index of s. As follows from table 1, for A2 we have n(A2) = 2,
while for rank 1 algebras the index equals 1. Now let R = ∑

i Ri be the decomposition of R
into irreducible representations of s.
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Proposition 6. Let s
−→⊕R(deg R)L1 be a perfect Lie algebra. If deg Ri − dim(s) � n(s) for

all i and Ri = Rj if and only if i = j , then∑
i

N (gi) < N (g) (34)

where gi := s
−→⊕ Ri

(deg Ri)L1.

Proof. Since the degree of R exceeds the normalization index of s, proposition 4 holds and any
invariant of g depends only on the variables associated with the radical (deg R)L1. Moreover,
since for any irreducible component the same property is preserved, we have that

N (gi) = M(gi) ∀i (35)

and any Casimir invariant Ci of gi extends to an invariant of g naturally. Since the irreducible
components of R are supposed to be pairwise in equivalent, this ensures that the set

⋃
i{Fi} is

formed by independent functions, where Fi denotes a fundamental system of invariants of gi .
Since

N (g) = M(g) = deg R − dim s >
∑

i

(deg Ri − dim s) (36)

the inequality (34) is strict. �

Formula (34) gives the maximal number of invariants that can be deduced taking into
account the decomposition of R into irreducible representations. Here the nonequivalence
of the components is important, since otherwise some of the elements in

⋃
i{Fi} may be

dependent. If we introduce an additional quantity η, which is defined as the smallest
integer such that a subset F′ ⊂ ⋃

i{Fi} is formed by independent functions and such that
|F′| = | ⋃i{Fi}|−η (that is, η gives the minimal number of invariants which must be removed
to obtain an independent set), then we can enounce a generalization of the preceding result:

Corollary 6. Let s
−→⊕R(deg R)L1 be a perfect Lie algebra. If deg Ri − dim(s) � n(s) for all

i, then ∑
i

N (gi) − η < N (g) (37)

where gi := s
−→⊕ Ri

(deg Ri)L1.

The essential condition of these lower bounds is that deg Ri � n(s) holds, as can easily be
seen taking the following algebra: g = su(3)

−→⊕ 3⊕3⊕39L1. From table 1 we see that N (g) = 1,
and applying proposition 4 the invariant is easily found to be

(x9x13x17 − x9x14x16 − x11x13x15 − x10x12x17 + x11x12x16 + x10x14x15). (38)

Considering the decomposition of the representation we have gi  su(3)
−→⊕ 33L1. This shows

that formula (34) does not hold for this case, but even more, that no invariant of gi extends to
an invariant of g, because the invariants of gi depend on the variables associated with the Levi
part su(3).

6. Conclusions

We have completed the classical result of [11] by showing that a perfect Lie algebra g always
has nontrivial invariants for the coadjoint representation, which is not an obvious fact in view
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of Lie algebras like the special affine sa(n, R), which have only invariants independently
of the rank. This result follows from the special structure that the radical r of a perfect
Lie algebra g = s

−→⊕Rr must have, excluding the existence of elements in r which act as
derivations on the maximal nilpotent ideal of g (i.e., of total elements in r). This shows
that the existence of a fundamental set of invariants formed by Casimir operators follows
from the perfectness of the algebra, and that additional assumptions such as the existence of
a nondegenerate bilinear form (as in the semisimple case) have an effect on the degree of
these operators. For nonsemisimple perfect algebras there are no general formulae giving
the number of independent Casimir invariants, but useful upper bounds for N (g) can be
established analysing the structure of the representation R of the Levi part expressing the Levi
decomposition. Indeed the case of Abelian radicals suffices, since the general case of arbitrary
radicals reduces to the latter by means of IW-contractions. Starting from the upper bound
obtained, we can deduce general results concerning the structure of the Casimir operators,
specifically on the variables they depend on. In particular, it is shown that the number and
structure of the invariants of Lie algebras s

−→⊕ ad(s) dim sL1 are completely determined by the
Casimir operators of the semisimple part s. Moreover, for high-dimensional representation
the invariants will be independent of the variables associated with the Levi. Therefore the
invariants are comprised in certain subsystems of (2). An interesting consequence of this is the
possibility of obtaining invariants from perfect subalgebras associated with the decomposition
of R into irreducible representations. This result is of interest for branching rules, since
it allows us to determine those invariants (and in consequence those states) which depend
essentially on the whole representation, and not on their irreducible components. This also
relates to the problem of missing label operators [25], where the subalgebras to be considered
are those corresponding to the different irreducible components of R, and representations
involving tensor products. The physical application is worthy, since it allows important
reductions. For example, as is well known, boson-like pairs ZN of neutrons and protons
(outside the closest closed shell) uniquely define a representation R = (ZN, 0, 0, 0, 0) of A5,

which decomposes as a direct sum of A2-representations according to the Arima–Iachello
formula [26], and allow a classification of levels of rotational-like nuclei by means of the
weight diagrams of su(3) [27]. Now the invariants of the Lie algebra A5

−→⊕ R(deg R)L1

can be described in terms of the decomposition of R as a sum of su(3)-representations as
soon as ZN � 4 (ZN �= 6, 9, where a copy of the trivial representation of su(3) appears),
since we would have deg R > n(A5) + dim(A5) � n(A2) + dim(A2), which ensures that the
semisimple part does not intervene in the solutions of the system (2).

Another potential application of the results in section 5 arises in the theory of similarity
solutions of differential equations [28]. Indeed, if g = s

−→⊕ R(deg R)L1 is the symmetry
algebra of the system

Fv

(
xi, uj ,

∂uj

∂xi

, . . . ,
∂ruj

∂xi1 . . . ∂xiq

)
= 0 (39)

with (v = 1, . . . , l; 1 � i � m, 1 � j � n) and R = ∑
i Ri is the decomposition of R, then

the subalgebras gi = s
−→⊕Ri

(deg Ri)L1 can be used to obtain similarity solutions of (39), with
the additional fact that the invariants of gi used for the reduction of the system are indeed
invariants of the total (symmetry) algebra.

An important question that arises is whether the normalization index n(s) of a semisimple
Lie algebra can be determined as a function of the rank of the Lie algebra, or if further
quantities have to be considered. An explicit formula for this index would provide us with
a quite systematic method to determine the invariants of perfect Lie algebras. In any case
it would allow us to distinguish the representations R which must be analysed separately.
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Of particular interest are the algebras g = s
−→⊕R(deg R)L1 whose defining representations

satisfy deg R − dim(s) < n(s). Inhomogeneous Lie algebras constitute a special case of this,
and the difficulty of obtaining their invariants is well known [6]. It would be desirable to find
some method in order to predict the appearance of the Casimir operators of these algebras. This
reduces to finding general criteria to solve systems like (23), where the traditional methods
are not always applicable, due to the division of the variables intervening in the differential
operators ∂xj

and those defining the coefficients of the system.
Finally, general criteria to describe the invariants of an algebra which depend on the

variables of the representations R and not on the variables of some of its components
would also provide valuable information concerning the physical quantities described and
codified by these representations. This particularly concerns the representations of exceptional
Lie algebras, whose branching rules and tensor product decompositions have shown some
importance in the problem of state classification [29, 30], and which constitute nowadays a
common tool in high energy physics, particularly in string theory [31].
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